
Indicators of chemical reactions

Emission of light or heat

Formation of a gas

Formation of a precipitate

All chemical reactions:

have two parts

- Reactants the substances you start with
- Products- the substances you end up with
- The reactants turn into the products.
 Reactants → Products

 Describing chemical reaction
 The way atoms are joined is changed, they are rearranged

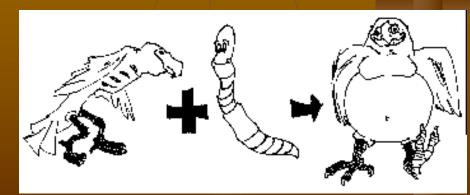
Energy must be added to break bonds

Forming bonds releases energy

Energy is conserved

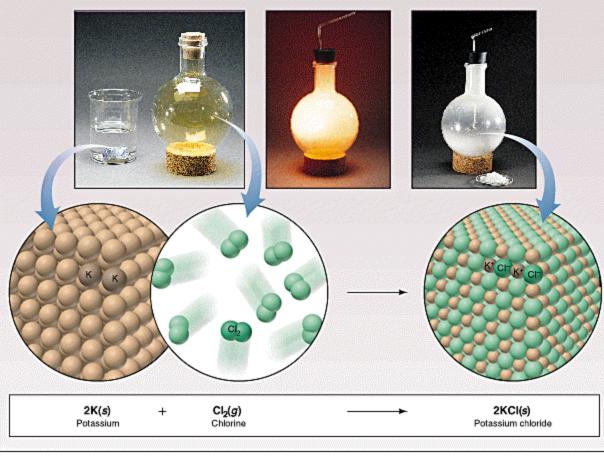
Types of Reactions

There are five types of chemical • reactions we will talk about:


1. Synthesis reactions

- reactions 2.
- Single displacement reactions 3. reactions
- 4.
- **Combustion** reactions 5

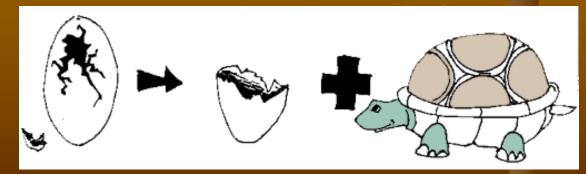
You need to be able to identify the type of reaction and predict the product(s)


1. Synthesis reactions

- Synthesis reactions occur when two substances (generally <u>elements</u>) combine and form a compound. (Sometimes these are called combination or addition reactions.)
 reactant + reactant → 1 product
- Basically: $A + B \rightarrow AB$
 - Example: $2H_2 + O_2 \rightarrow 2H_2O$
 - Example: $C + O_2 \rightarrow CO_2$

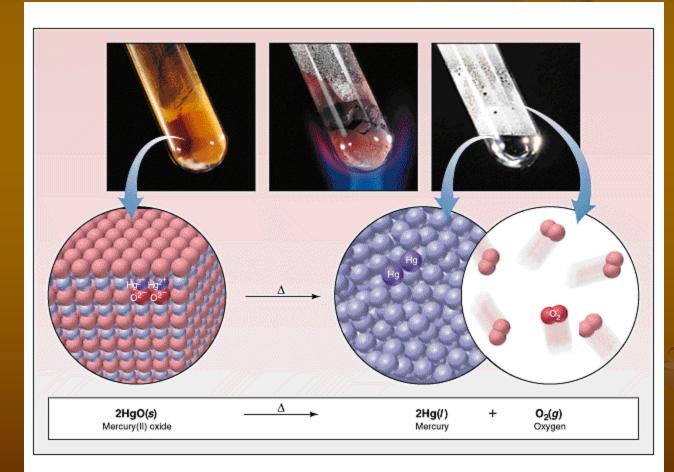
Synthesis Reactions

Here is another example of a synthesis reaction



Practice

 Predict the products. Write and balance the following synthesis reaction equations. Sodium metal reacts with chlorine gas $Na_{(s)} + Cl_{2(q)} \rightarrow$ Solid Magnesium reacts with fluorine gas $Mg_{(s)} + F_{2(q)} \rightarrow$ Aluminum metal reacts with fluorine gas $AI_{(s)} + F_{2(g)} \rightarrow$

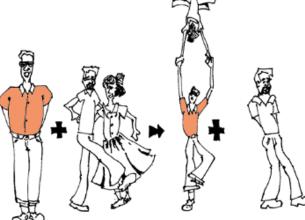

2. Decomposition Reactions

- Decomposition reactions occur when a compound breaks up into the elements or to simpler compounds
- 1 Reactant → Product + Product
- In general: AB \rightarrow A + B
- Example: $2 H_2 O \rightarrow 2H_2 + O_2$
- Example: 2 HgO \rightarrow 2Hg + O₂

Decomposition Reactions

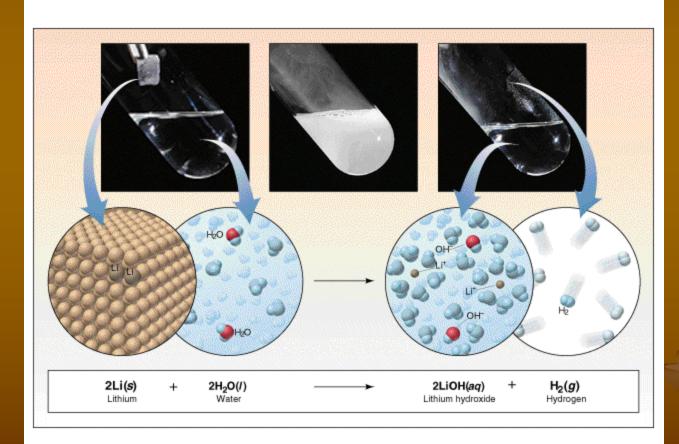
Another view of a decomposition reaction:

Practice


- Predict the products. Then, write and balance the following decomposition reaction equations:
- Solid Lead (IV) oxide decomposes
 PbO_{2(s)} →
- Aluminum nitride decomposes

 $AIN_{(s)} \rightarrow$

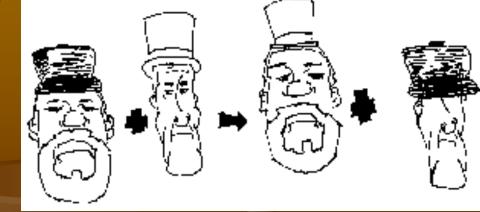
3. Single Replacement Reactions


- Single Replacement Reactions occur when one element replaces another in a compound.
- A metal can replace a metal (+) OR a nonmetal can replace a nonmetal (-).
- element + compound → element + compound
 A + BC → AC + B (if A is a metal) OR
 A + BC → BA + C (if A is a nonmetal)
 (remember the cation always goes first!)

When H_2O splits into ions, it splits into H^+ and OH^- (not H^+ and O^{-2} !!)

Single Replacement Reactions

Another view:


Single Replacement Reactions

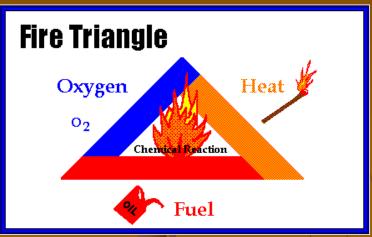
- Write and balance the following single replacement reaction equation:
- Zinc metal reacts with aqueous hydrochloric acid

 $Zn_{(s)} + 2 HCl_{(aq)} \rightarrow ZnCl_2 + H_{2(g)}$ Note: Zinc replaces the hydrogen ion in the reaction

4. Double Replacement Reactions

- Double Replacement Reactions occur when a metal replaces a metal in a compound and a nonmetal replaces a nonmetal in a compound
- Compound + compound → compound+ compound
- $AB + CD \rightarrow AD + CB$

Double Replacement Reactions

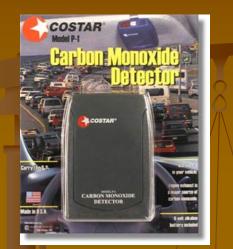

- Think about it like "foil"ing in algebra, first and last ions go together + inside ions go together
- Example: $AgNO_{3(aq)} + NaCl_{(s)} \rightarrow AgCl_{(s)} + NaNO_{3(aq)}$
- Another example: $K_2SO_{4(aq)} + Ba(NO_3)_{2(aq)} \rightarrow 2 KNO_{3(aq)} + BaSO_{4(s)}$

Practice

- Predict the products. Balance the equation
- 1. $HCl_{(aq)} + AgNO_{3(aq)} \rightarrow$
- 2. $CaCl_{2(aq)} + Na_3PO_{4(aq)} \rightarrow$
- 3. $Pb(NO_3)_{2(aq)} + BaCl_{2(aq)} \rightarrow$
- 4. $\operatorname{FeCl}_{3(aq)}$ + $\operatorname{NaOH}_{(aq)}$ >
- 5. $H_2SO_{4(aq)} + NaOH_{(aq)} \rightarrow$
- 6. $KOH_{(aq)} + CuSO_{4(aq)} \rightarrow$

5. Combustion Reactions

- Combustion reactions occur when a hydrocarbon reacts with oxygen gas.
- This is also called burning!!! In order to burn something you need the 3 things in the "fire triangle": 1) A Fuel (hydrocarbon) 2) Oxygen to burn it with 3) Something to ignite the reaction (spark)



Combustion Reactions

- In general: $C_xH_v + O_2 \rightarrow CO_2 + H_2O$
- Products in combustion are ALWAYS carbon dioxide and water. (although incomplete burning does cause some byproducts like carbon monoxide)
- Combustion is used to heat homes and run automobiles (octane, as in gasoline, is C_8H_{18})

Carbon monoxide, an invisible gas, can be deadly.

The Tell-Tale Face of Carbon Monoxide Poisoning

FLU-LIKE SYMPTOMS

- 1. Headache
- 2. Fatigue or Weakness
- 3. Muscle Aches or Pains
- 4. Nausea or Vomiting
- 5. Diarrhea or Bloating
- 6. Confusion or Memory Loss
- 7. Dizziness or Incoordination
- 8. Difficult or Shallow Breathing
- 9. Rapid Heart Beat or Chest Pain
- 9. Rapid Heart Beat of chest Fail
- 10. Changes in Sensory Sensitivity to Lights, Sounds, Odors, Tastes or Touch

AT RISK FROM CARBON MONOXIDE

- CO is most harmful to pregnant women, children, the elderly and anyone with a chronic disorder affecting the blood, brain, heart, lungs or muscles, such as Anemia, Alzheimer's, Angina, Asthma or ALS.
- CO also worsens and may cause Autism, Chronic Fatigue Syndrome, Depression, Fibromyalgia, Impotence, Multiple Chemical Sensitivity, Parkinsonism and Psychiatric Disorders.

SOURCES OF CARBON MONOXIDE

- External from combustion sources such as vehicles (especially in winter and in buildings with attached garages), furnaces, water heaters, space heaters, ovens, tobacco smoke, explosives and gasoline-powered appliances of all kinds, especially generators and compressors.
- Internal from breakdown of heme and inhaled or ingested dichloromethane, also known as methylene chloride, a common ingredient in solvents and spray cans.

EFFECTS OF CARBON MONOXIDE

- CO binds more tightly than oxygen to heme proteins, especially hemoglobin, myoglobin and cytochromes, impairing function of brain, muscle, liver and other organs.
- CO increases blood sugar, acidosis and polycythemia while decreasing metabolism, blood
 pressure and body temperature; at high levels, CO may cause coma or death within minutes.
- CO acts as a neurotransmitter modulating heart rate, respiration, blood vessel tone, learning, memory, sexual function and sensory sensitization (or habituation) to odors, light and sounds.
- CO poisoning in pregnancy may result in birth defects, mental retardation and low birth weight.
- Reoxygenation may cause brain lipid peroxidation with chronic neurological effects appearing later

TREATMENT OF CARBON MONOXIDE POISONING

 100% oxygen daily – hyperbaric if severe or normobaric, humidified and via a partial non-rebreather mask. Continue daily treatments of 1 to 2 hours until symptoms resolve and levels of carboxyhemoglobin, CO in exhaled breath and the arterio-venous gap in the partial pressure of oxygen all return to normal.

 In non-smokers, normal COHb is under 1.6%, normal breath CO is under 4ppm, and the normal arteriovenous PO2 gap is over 60 mmHg (venous sample drawn from antecubital fossa without a tourniquet).

© Copyright 2000, Albert Donnay. All rights reserved.

*Edgar Allan Poe's drooping eye and mouth are signs of CO poisoning. Ve 3 "Painter Portrait" courtesy of Marytand Historical Society reversed-image daguere type)

FOR MORE INFORMATION: MCS REFERRAL & RESOURCES

www.mcsrr.org 1-800-466-9320 CARBON MONOXI DE SURVIVORS www.carbonmonoxide.org

Combustion Reactions

Edgar Allen Poe's drooping eyes and mouth are potential signs of CO poisoning.

Combustion

- Example
 - $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$
- Write the products and balance the following combustion reaction:
 - $C_{10}H_{22} + O_2 \rightarrow$

Mixed Practice

 Copy this chemical equation and label the reactants and products:

• $C_5H_{12} + O_2 \rightarrow CO_2 + H_2O_2$

Mixed Practice

- State the type and predict the products:
- 1. $BaCl_2 + H_2SO_4 \rightarrow$
- 2. $C_6H_{12} + O_2 \rightarrow$
- 3. $Zn + CuSO_4 \rightarrow$
- 4. Cs + Br₂ \rightarrow
- 5. FeCO₃ \rightarrow